
FloPoCo
A generator of non-standard

floating-point operators for FPGAs

RAIM, June 3-5, 2008

Bogdan PAS, CA
Cristian KLEIN

(Florent de DINECHIN)
projet Arénaire, ENS-Lyon/INRIA/CNRS/Université de Lyon

CENTRE NATIONAL

DE LA RECHERCHE

SCIENTIFIQUE

Outline of this presentation

Why: Floating-point opportunities in an FPGA

What: Examples of current operators

How: Not an operator library, but a generator of operators

When: Conclusion and open questions

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

2

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

Why?

3

What are FPGAs?

reconfigurable logic

CLB

routing grid

4

When are FPGAs really good at floating-point ?

IEEE-754 +,−,× ?

⊕ Massive parallelism on an FPGA

	 Each operator 10x slower than the processor’s

→ Faster than a PC, but no match to GPGPU, Cell, ClearSpeed, ...

Double-precision floating-point logarithm?

Pentium: 130 cycles @ 2GHz

FPGA: Specific combinatorial architecture

less than 1/10 the area of a large FPGA (and logic only)
arbitrarily pipelinable
One log per cycle @ 200MHz: 10x faster than the processor

√
x2 + y2 + z2 ?

5

NOT Economical in a Processor

Algebraic functions (1/x ,
√

x ,
1√

x2 + y2 + z2
, polynomials, ...)

Elementary functions (sine, exponential, logarithm...)

Compound functions (log2(1± 2x), e−Kt2
, ...)

Floating-point sums, dot products, sums of squares

Complex arithmetic

LNS arithmetic

Decimal arithmetic

Interval arithmetic

...

Oh yes, basic operations, too, but with a bit of pepper

output precision may be different from input precision
optimized special cases such as multiplication by a constant

6

Non-standard arithmetic in processors

How about a processor with all these operations?

It would be very big

It would be very expensive

Processor would be underutilised

Still, precision would be fixed

How would they be pipelined?

Current approach in processors

basic operations are very fast

elementary functions are microcoded (slower)

complex functions have to be written in software (even slower)

7

What?

8

FloPoCo – Not your neighbor’s FPU

FloPoCo is a generator of operators

written in C++

generating portable, synthesizable VHDL

open-source (LGPL)

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

Feel free to try it... and even contribute

9

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

High-level goals

Easy to create arithmetic operators for FPGA

with tunable input / output precision
automatic pipelining
fine-tuned for several FPGA targets

Easy to combine and reuse in more complex designs

e.g. reuse shifter and int multiplier in FP multiplier
automatic pipeline adjustment
automatic precision augmentation

Automatic test-case generation

operator depending testing
also allow random / exhaustive testing
validated using software arithmetic

10

What we have now

Integer Adder / Multiplier

FP Adder / Multiplier

Integer / FP constant multiplier

Long accumulator

FP Exponential (not pipelined)

FP Logarithm (not pipelined)

HOTBM (fixed-point) (not pipelined)

sin(x · π/4)
log(1 + x)

Automatic test-bench generation for all these operators

11

Usage

flopoco -pipeline=yes -frequency=240 -DSP blocks=no
FPMultiplier 8 23 8 23 8 23 1 IntAdder 16

Command line syntax: a sequence of operator specifications

performance specifications (for optimization)
operator name and parameters

Output: a single VHDL file for all the operators (flopoco.vhdl).

12

Example 1: constant multipliers

Integer

CSD recoding

balanced add tree
(DAG actually)

small, fast, no DSP
block

Example: Pi/4 on 50 bits

0 0 0 0 0 0 0 0 00 + 0 + 0 + 0 + 0 0 0 0 0 0 0 0 0 0 0 0+ + 0 0 + 0 + − 0 − + + 0 + 0 + + 0 + + + 0

5X5X17X5X−3X 3X9X 127X3X

39854788871587X

884279719003555X

558499X4751061X

−43X1859X 2181X 163X

Floating-point

Compared to using a standard FP
multiplier:

smaller mantissa multiplication

earlier normalization decision

shift/roundExn

Exexn

exn

+EC

×1, FC+1

shift right

wF

wFX

1

ER FR

FX

FX > Fcut?

wFC
+ wFX

+ 2
ov

ftz

2

2

13

An FP constant multiplier by Pi

> flopoco FPConstMult 11 52 11 52 0 -52 14148475504056881

Output: > FPConstMult, wE in=11, wF in=52, wE out=11,
wF out=52, cst sgn=0, cst exp=-52,
cst sig=14148475504056881
Number of adders: 16

Output file: flopoco.vhdl
Final report:
Entity IntConstMult 52 14148475504056881:
Not pipelined

Entity FPConstMult 14148475504056881bM53 11 52 11 52:
Not pipelined

FPConstMult FPMultiplier FPMultiplier+DSP
Slices 512 (8%) 1608 (26%) 1112 (18%)
4-input LUTs 1000 (8%) 3191 (25%) 478 (3%)
Latency 14ns 21ns 4ns

14

Example 2: Accumulation of floating-point values

Tailor accumulator to application
MSBA LSBAMaxMSBX

wA = MSBA − LSBA + 1

Accumulator

Summands (shifted mantissas)

wF + 1

current sum bits

15

Accumulator & post-normalisation unit

fixed-point sum

mantissaexponent

registers
wA

MaxMSBX − LSBA + 1

mantissa

Input Shifter

wF
wE

exponent
MaxMSBX

LZC + shifter

FP adder is wasteful

sign and exception handling

X

X Y EX − EY

Y

MY

MYMX

M ′Z

EX

FZ

k

EZ

EX

FZ

M ′Z

MX
M ′Y

Z

wE + wF + 3 wE + wF + 3

wE + wF + 3 wE + wF + 3

wF + 1wF + 1wE

wF + 3

dlog (wF + 3)e

wE + 1

wF + 1
wF + 1

wE
wF + 4

wF + 1
wF + 4

wF + 1

wE

wE + wF + 2

wE + wF + 3

close/far

+/–

final normalization

LZC

shift/round
round

shift

/

swap/difference

far path

close path

Provably avoid all rounding errors in the accumulation
Only local routing in accumulator
Arbitrary frequency using partial carry-save in the accumulation

cut the carry propagation every 30 bits for 400 MHz operation

Also used in an exact dot-product operator, and more to come.
16

Example 3: approximation of fixed-point functions

A faithful 15-bit fixed-point approximation of some function on [0, 1]

flopoco HOTBM "exp(x*x)" 15 15 4

(...)
Tested 7571 designs.
Best design: 15 15 4 3 rom 3 0 powmult 3 12 adhoc 12 12 2 0 3
6 3 6 powmult 3 12 rom 11 1 1 3 8 3 3 powmult 3 11 rom 11 1 0
3 11 powmult 3 11 rom 12 2 0 3 6 3 6
Score: 493821593
Output file: flopoco.vhdl

Clever table-based approach, generated VHDL file is 270 KB

Useful building block for FP elementary functions

Arbitrary mathematical expression accepted as an input

FloPoCo uses Sollya for expression parsing and Remez algorithm.

J. Detrey and F. de Dinechin. Table-based polynomials for fast hardware function

evaluation. In ASAP 2005. IEEE.
17

Automatic pipelining

flopoco -frequency=220 -DSP blocks=no FPMultiplier 8 23 8 23 8 23

Entity FPMultiplier 8 23 8 23 8 23:
Pipeline depth = 9
Minimum period: 4.063ns (Maximum Frequency: 246.105MHz)

flopoco -frequency=330 -DSP blocks=no FPMultiplier 8 23 8 23 8 23

Entity FPMultiplier 8 23 8 23 8 23:
Pipeline depth = 13
Minimum period: 2.738ns (Maximum Frequency: 365.230MHz)

Very good match with synthesis reports (default target is Virtex4)

Other operators need more fine tuning

For now, geared towards high frequencies

18

Automatic pipelining frequency estimates

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8

F
re

qu
en

cy
 (

M
H

z)

Test #

Frequency estimation errors for IntAdder

Expected
IntAdder_16
IntAdder_32
IntAdder_64

IntAdder_128
IntAdder_256

19

Testbench generation

Comes in two flavors:

Basic Testing
>flopoco FPLog 8 16 TestBench 10000

Generates 10000 random test cases, plus a few standard ones

Puts tests directly in VHDL

Works well for up to 100.000

Failures are easy to follow

Soak Testing
>flopoco FPLog 8 16 BigTestBench 10000000

Puts test vectors into a separate file

Works for (at least) 10.000.000

Failures are hard to follow (especially for pipelined designs)

20

How?

21

What’s wrong with VHDL

FloPoCo is a generator of VHDL floating-point operators for
FPGAs.

It supersedes FPLibrary, a library of VHDL floating-point operators
for FPGAs.

Experience with FPLibrary:

unpleasant to install (too bulky) – bad design probably
a lot of work to pipeline, then pipeline not flexible
ugly code (too many parameters) for complex operators, and even
simple ones (recursive synthesisable VHDL)
no real design space exploration possible

End of 2007, we had several bits of Maple, OCaml, bash and C++ code
generating various bits of FPLibrary
courtesy of Jérémie Detrey, Xavier Pujol, Florent de Dinechin

22

What’s nice with generators?

Many parameters, clean VHDL code

For the user: faster compilation and easier debug

Area/time/accuracy: one size does not fit all

optimal design may depend on architectural parameters of target
FPGA (e.g. number of LUT inputs)
automatic, constraint-oriented pipeline generation
...

High-level input specification

flopoco HOTBM "exp(x*x)" 15 15 4,
function specified as an arbitrary expression

Complex design-space exploration

Tested 7571 designs.

23

A modestly object-oriented approach

FloPoCo is not a C++-based HDL

VHDL generation is printf-based

Many helper functions help doing the printfs

But that’s mostly all

Signals, wires, ... are just syntactic objects
No notion of connecting two wires, building an architecture, ...
No notion of parallelism, sequentiality, synchronism, ...
No checking that no wire is left unconnected...

24

OO: The Operator hierarchy

The constructor explores the design space and computes all the
required internal parameters

output vhdl() does a lot of printf

Other methods and attributes mostly to avoid duplicated work
output vhdl header()
output licence()
add register(), output vhdl registers() etc:

I signals are still just syntactic objects
I but it saves a lot of printfs to declare them this way
I and a lot of mismatch bugs, and it makes tuning faster etc.

Methods for automatic pipeline generation
set pipeline depth(), get pipeline depth()

Methods for automated, parametric test generation
getTestIOMap(), fillTestCase()

25

Inheritance example: constant multipliers

26

OO: The Target hierarchy

Architecture-related methods and attributes

lut inputs();
suggest submult size(...);
...

Delay-related methods and attributes (for pipeline evaluation)

lut delay()
adder delay(int n)
...

Methods and attributes related to target performance and
behaviour, set by the command line

set pipelined()
set frequency()
use hard multipliers()
...

(currently only Virtex4 operational, Stratix II soon to come)

27

Automatic pipeline generation

Typical algorithm: rough and greedy

from the inputs to the outputs,

accumulate critical path delay
estimates (using the methods of
Target)

insert registers to keep this delay below
1/target frequency

y0x0y1x1y2x2 C

R

What we get?

A fair idea of the number of pipeline levels needed for a given
operator and a given frequency

Registers placed reasonably

maybe unoptimal results using vanilla vendor tools
but good starting point for retiming tools

28

Pipeline generation for composed operators

Example: FP constant multiplier

shift/roundExn

Exexn

exn

+EC

×1, FC+1

shift right

wF

wFX

1

ER FR

FX

FX > Fcut?

wFC
+ wFX

+ 2
ov

ftz

2

2

FPConstMult instantiates an IntConstMult

constructor of FPConstMult calls constructor of IntConstMult

It calls IntConstMult::get pipeline depth()

FPConstMult delays signals accordingly (add delay signal())

Both output vhdl() called in order.

29

Conclusions

30

Not bad for a 4-month old project

Overall the approach works well, but still early beta

Few operators really finished

The devil is in the details

It’s funnier to explore new operators than to polish existing ones

Some previous code waiting at the door

Pipelining is still a lot of work

31

Directions?

Short term

Add at least one Altera target, and stabilize pipelining
infrastructure

FPMultiplier pipeline works great for high frequencies, could be
improved on the smaller-and-lower end

Finish FPAdder

Explore FFDiv and FPSqrt

pipeline FPLog

Longer term

Endless list of operators

Explore using FloPoCo’s infrastructure to assemble larger pipelines

Explore direct interface to some C-to-hardware tool?

Add generation of formal proofs of numerical quality

<Insert your request here>
32

Questions?

Thank you for your attention.

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

33

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

Bibliography

N. Brisebarre and J.-M. Muller. Correctly rounded multiplication by arbitrary precision constants.

In Proc. 17th IEEE Symposium on Computer Arithmetic (ARITH-17). IEEE Computer Society Press, June 2005.

J. Detrey and F. de Dinechin. Floating-point trigonometric functions for FPGAs.

In Intl Conference on Field-Programmable Logic and Applications, pages 29–34. IEEE, Aug. 2007.

J. Detrey and F. de Dinechin. Parameterized floating-point logarithm and exponential functions for FPGAs.

Microprocessors and Microsystems, 31(8):537–545, Jun. 2007. Elsevier.

J. Detrey, F. de Dinechin, and X. Pujol. Return of the hardware floating-point elementary function.

In 18th Symposium on Computer Arithmetic, pages 161–168. IEEE, June 2007.

D. Goldberg. What every computer scientist should know about floating-point arithmetic.

ACM Computing Surveys, 23(1):5–47, Mar. 1991.

U. Kulisch. Circuitry for generating scalar products and sums of floating point numbers with maximum accuracy.

United States Patent 4622650, 1986.

T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product.

SIAM Journal on Scientific Computing, 26(6):1955–1988, 2005.

N. Takagi and S. Kuwahara. A VLSI algorithm for computing the euclidean norm of a 3D vector.

IEEE Transactions on Computers, 49(10):1074–1082, 2000.

I. Trestian, O. Creţ, L. Creţ, L. Vǎcariu, R. Tudoran, and F. de Dinechin. FPGA-based Computation of the

Inductance of Coils Used for the Magnetic Stimulation of the Nervous System
In Biomedical Electronics and Devices, IASTED, 2008.

34

